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J.  Phys. A: Math. Gen. 18 (1985) L187-LI93. Printed in Great Britain 

LETTER TO THE EDITOR 

Construction of quantum systems with soluble ground-state 
properties 

T Schneider and R Badii 
IBM Zurich Research Laboratory, 8803 Ruschlikon, Switzerland 

Received 29 November 1984 

Abstract. We propose transformation of the Langevin equation into an eigenvalue problem 
as a method to construct systems with soluble ground-state properties. As examples, we 
discuss quantum systems resulting from the Toda and sine-Gordon chains evolving accord- 
ing to the Langevin equation. Some ground-state properties are then evaluated with methods 
originally devised to calculate the partition function of one-dimensional classical systems. 
We also present numeridal results for the two-phonon bound-state frequency and its 
coupling constant dependence by simulating a generalised quantum sineGordon system. 

In this work, we present and illustrate a method to construct quantum systems with 
exactly soluble ground-state properties. This is achieved by considering the Fokker- 
Planck equation associated with the Langevin equation. In fact, the Fokker-Planck 
equation can be reduced to the Schrodinger equation by choosing the variance of the 
random force appropriately. As a result, a system evolving according to the Langevin 
equation and specified by its potential energy W is related to a quantum system with 
potential energy V, where V( W) as well as the ground-state wavefunction and its 
eigenvalue are known. Knowledge of the ground-state wavefunction then allows 
calculation of the properties of interest. This approach is particularly appealing in 
one-dimensional many-particle systems, where the resulting multiple integrals can be 
treated with the transfer integral technique, originally developed to calculate the 
partition function and related properties of classical systems (Scalapino er a1 1972). 

Other interesting aspects of this relationship between the Langevin equation and 
an associated quantum problem are (Schneider et a1 1985): (a) the energy spectrum 
of the quantum system can be investigated by simulating time-dependent correlation 
functions in the stationary Langevin process; (b) the critical dynamics of a d -  
dimensional system evolving according to the Langevin equation can be mapped onto 
the static critical properties of an associated quantum system and its ( d +  1) -  
dimensional classical counterpart. 

The letter is organised as follows: we sketch the relationship of the model evolving 
according to the Langevin equation and the associated quantum system, with known 
ground-state wavefunction and eigenvalue. Invoking the transfer integral technique, 
we then calculate ground-state properties of interest for a generalised Toda and 
sine-Gordon chain. Finally, we present some numerical results for the two-phonon 
bound state and its coupling-constant dependence by simulating a generalised quantum 
sine-Gordon model in terms of the Langevin process. 
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To sketch the method, we consider a one-dimensional N-particle system. The time 
evolution is given by the coupled Langevin equations 

XI = dxl/dt  = -a W / a x f  + v l ( t ) .  (1) 

(771(f)) = 0, ( d t )  7 7 x 1 ’ ) )  = u&6(f - 19, (2) 

The N-independent Gaussian-noise sources satisfy 

where U is the variance of the random force. The associated Fokker-Planck equation 
for the probability density P ( x , ,  . . . , x , ;  t )  

in the stationary equilibrium state admits the solution 

Peq - exp(-2 W /  U ) .  

Invoking the transformation 

p ( x l , .  . . , x N  ; t )  = P : ~ * ( X ~ ,  . . . , x N  ; t ) ,  

it reduces to the imaginary-time Schrodinger equation 

--=( PP - $ - + V ) *  U a’ 
a t  I a d  

The potentials W and V are related by the Riccati-type equation 

The associated eigenvalue problem 

yields a non-negative energy spectrum, with 

A o = O ,  Qo = p:? = 

(4) 

5 )  

(7)  

(9) 

This set of equations forms the framework for the correspondence between the Langevin 
process and a quantum problem. In fact, considering the Schrodinger equation 

fi2 a2 - 
2 f = - - ~ - - - + V ( x 1 ,  . . . ,  x , ) ,  a+ 1 

a t  fi 2m I ax:  
i - = -%$, 

and setting 

$-  Qm exP(-iAmt), (11) 
we obtain an eigenvalue problem identical to the corresponding Fokker-Planck 
expressions ( 6 )  and (8), provided that 

(12) 

For the purpose of constructing quantum systems with soluble ground-state properties, 
this correspondence might be used as follows: from (6)-(9) it follows that the quantum 
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system with Hamiltonian 

and V specified by the Riccati equation (7), has the ground state given by (9). On the 
basis of this ground-state wavefunction, it is now possible to calculate quantities of 
interest. 

To illustrate the method, we first construct a generalised quantum Toda lattice. 
The potential energy of the one-dimensional Toda lattice might be written as (Toda 
1967) 

w = g - 2 C  {exp[-g(xl+l -xI)]+g(xl+l - X I ) -  11. (14) 

In the weak-coupling limit (g<< l ) ,  W reduces to the potential-energy expression for 
a harmonic chain. Using (7), (9) and (14), a generalised quantum Toda lattice with 
known ground-state wavefunction and eigenvalue is now easily constructed. Its 
Hamiltonian is 

I 

- {exPE -g (XI+ I - XI )I + expr -g(x1 - XI- I 111). (15) 

The potential energy involves not only nearest-neighbour but also next-nearest-neigh- 
bour interactions. Considering a lattice with one open end, the norm as obtained from 
(9) and (14) is 

and p denotes the pressure. Evaluation of the multiple integral is completely equivalent 
to calculation of the partition function of the classical Toda lattice with potential 
energy W (14) (Takahasaki 1942). Introducing the variables 

rl=xI+I-x/, (18) 

d(xo,. . a ,  XN.)/d(TI, u . .  , T N ) =  1, (19) 

and observing that 

the multiple integral reduces to 
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Here we have introduced the scaled variables 

Ground-state properties are now readily obtained. Examples are the zero-pressure 
linear expansion 

and the zero-pressure mean-square expansion 

g2((r2) - ( r ) ’ )  = p-2 a2 In n( p)/ag’ 
In the weak-coupling limit (g<< l ) ,  these expressions reduce to (Schneider and Stoll 
1981) 

(25) 

(26 )  

As a second example, we construct a generalised sine-Gordon chain with a potential 

1 2 3  I 4 7  (r)lp=,,=+ug+su g - m u  g + . . . 

( r 2 ) - ( r ) 2 / p = , = ~ u + $ c T 2 g 2 + ~ a 3 g 4 +  . . . . 
and 

energy of 
A C 
g 1  2 1  

w = ( 1 - cos gx1) + - c (XI+ I - XI 12 ,  

where g is the coupling constant. For g<< I ,  this expression reduces to the potential 
energy of the harmonic chain. Invoking then (7)  and (14), for the Hamiltonian of the 
generalised quantum sine-Gordon chain we find 

2 

sin gxl + C(2x1 - xI+, - x ~ - ~ ) )  - $  (A cos gxl + 2 C )  
I 

with known ground-state wavefunction and eigenvalue (9) and (27). The calculation 
of the norm 

1. 

N(A,  C, U, g )  = dxl e-2w’u J l  
is again equivalent to the evaluation of the classical partition function of the sine- 
Gordon chain, with l /k,T replaced by 2/u. As a consequence, the transfer-integral 
technique can be used to calculate properties of interest (Schneider and Stoll 1980). For 

CIA >> 1 ,  I lpc  >> 1, P = 2/ug2, (30) 

the resulting Fredholm integral equation can be transformed into an eigenvalue problem 
of Mathieu form. For 

128ACl u2g4 >> 1 (31)  
corresponding to the weak-coupling limit (g << 1 ), asymptotic expansions are well 
documented (Schneider and Stoll 1980, 1981), yielding for example 

2 1 
(cos gxJ= 1 + . . . + O[exp( -@&)I, 

P E K  2 ( P E K ) 3  
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where 
EK=8(AC)‘12, (35) 

EK is the kink-soliton energy of the classical chain. Other ground-state properties 
might be obtained from the numerical and analytical transfer-integral results of the 
classical sine-Gordon chain (Schneider and Stoll 1980). 

Comparison of the weak-coupling results for the generalised quantum Toda ((25) 
and (26)) and quantum sine-Gordon ((32) and (34)) chains reveals important 
differences. In the Toda case, perturbation theory will work, because in the weak- 
coupling limit the ground-state properties are given by a power-law expansion in the 
coupling constant, which can be collected in terms of derivatives of the r function 
((23) and (24)). In the sine-Gordon case, one has to distinguish between properties 
dominated by power laws and those where the exponential contribution, originating 
in the classical case from the kink solitons, enters to leading order. In fact, for properties 
dominated by the exponential term, the weak-coupling limit (g + 0) corresponds to an 
essential singularity, so that perturbation theory is not applicable. For power-law 
dominated properties, however, usual perturbation theory is again valid. 

Finally, we note that the excitation spectrum of the quantum models can be studied 
in terms of the long-time behaviour of appropriate correlation functions of the Langevin 
process defined by (1). A detailed account of this simulation technique was given by 
Schneider et a1 (1985), Here, we merely note that the correlation function 

Scc(q, t )  = N-’12 (cos gxr(t)-(cos gxf))eiqf 1 (( I 

(cos gxl(0) -(cos gxJ) eiqf 

=; l(OlN-”2Feiqf(cos gxl-(cos gxl)) I n ) I 2  exp(-Ant) 

obtained from the Langevin process ( l ) ,  with W given by (27), corresponds to the 
imaginary-time correlation function of the generalised quantum sine-Gordon system 
with Hamiltonian (28). Thus, the numerical determination of the long-time behaviour 
provides an estimate for the lowest excitation probed by the particular correlation 
function. In the generalised quantum sine-Gordon equation (28), a weak-coupling 
treatment suggests that Scc(q, o) is dominated by a two-phonon bound state with 
frequency (Maki 1984) 

w ( q = 0 ) = 2 f l ( O )  1 -  
g 2 a  ( 1  + ug2/8A)’)’]’” 

7 [ (4(2CA)’12 1 + ug2/2A (39) 

where 
f12( 9) =[A + 2C( 1 -COS q)I2+fug2A, 
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followed by a two-phonon continuum. To test the limitations of this weak-coupling 
prediction, we performed a numerical simulation of Sc-(q = 0, t )  (38), with two values 
for U, namely, 1 and 8.924. We considered a chain of 200 particles and averaged over 
20 independent runs. From the long-time behaviour of the correlation function (38), 
we estimated the lowest excitation frequency at q = 0 for various values of g ranging 
from 0 to 1.  A comparison between the weak-coupling prediction (39) and the numerical 
estimates is given in figure 1. As expected, the weak-coupling prediction is asymptoti- 
cally correct, but the range of coupling constants providing excellent agreement 
becomes smaller as w increases, or in other words, the stronger the quantum fluctuations 
are. In the limit g + 0, where the harmonic approximation becomes exact, there is no 
longer a bound state and w ( q  = 0) is given by the lower boundary of the two-phonon 
continuum. In the strong-coupling limit, g + m ,  the system is again equivalent to 
coupled harmonic oscillators but without a gap. Thus, w (  q = 0, g + CO) vanishes. 

t 
0 0 5  1 .o 

9 

Figure 1. Comparison between the weak-coupling estimates for the two-phonon bound- 
state frequency (equation (39)) in Scc(q, w )  and the numerical estimate from the stochastic 
simulation of Scc(9, 1 )  (equation (38)) for A = I ,  C =29.22, U =  1 and 8.924. The full 
curve represents the weak-coupling approximation, the broken curve the numerical estimate. 

We thank K Maki. X Zotos and M Zannetti for valuable discussions. 
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